一流产品,以专业铸造辉煌
Mirrorcle Technologies 成立多久了?
Mirrorcle Technologies, Inc. (MTI) 成立于 2005 年,是 Adriatic Research Institute 的衍生公司,其核心技术开发始于 2001 年。
MEMS 代表什么?
“MEMS” 代表微机电系统(microelectromechanical systems),这是一种能够制造包含 1 到 100 微米大小组件的“机器”的技术(因此前缀为“微”)。MEMS 器件通过改进的半导体制造技术实现,这些技术通常用于电子产品的制造。
MEMS 镜子的用途是什么?
与任何镜子一样,基于 MEMS 的镜子用于光束控制应用,即以受控方式将光束或图像从一个点偏转到另一个点。通过以倾斜方式移动镜子,光束可以偏转到空间中的任意新位置。应用包括 3D 扫描和物体数字化、投影显示、激光标记和打印、图像扫描、自由空间通信、位置跟踪和传感、快速原型制作、激光探测与测距(LADAR / LIDAR)、动态固态照明和动态前照灯,以及各种生物医学成像应用,如基于光学相干断层扫描(OCT)的成像等。
Mirrorcle Technologies 的镜子有何独特和优越之处?
Mirrorcle Technologies 提供专有的无万向节双轴 MEMS 设计,能够实现更大镜面和更大角度的更快光束控制。这使得性能的整体优值(速度 * 角度 * 直径)通常比任何竞争方法高出一个数量级。此外,Mirrorcle 的 MEMS 采用专有工艺制造,整个微机电结构可以在单层单晶硅中制造。这使得镜子定位在多年和/或数十亿次循环中具有高的重复性和可靠性,并且在极大的温度范围内也能保持稳定。具体来说,这种制造工艺在运动部件中不包含任何麻烦的材料,如金属、聚合物、多晶硅、压电材料或磁体。所有运动、弯曲部分均由纯弹性材料(单晶硅)制成,并且完全通过静电驱动工作,无需显著电流。这些无万向节双轴扫描 MEMS 镜子在双轴上提供高达 32 度的超低功耗和快速光束扫描,同时功耗低于 1 mW。线性化驱动方案和四象限可寻址静电梳状驱动器设计实现了近乎线性的电压-角度特性。
更多信息请参阅《MEMS 镜子技术概述》。
MEMS 镜子的可定制性
有哪些可用的镜子尺寸?
我们目前提供直径从 0.8 毫米到 7.5 毫米的圆形镜子作为常规库存产品。此外,我们还提供长形、矩形或椭圆形镜子用于单轴光学线偏转。如果您的应用需要更大或不同形状的镜子尺寸,请联系我们。由于我们的镜子采用模块化设计,我们能够实现多种类型和尺寸的镜子,以完美满足您的应用需求。
咨询联系:185 0219 3480
集成镜子和粘合镜子有什么区别?Mirrorcle Technologies 提供哪些设备类型?
我们根据镜子制造方法提供两类不同的设备:
集成镜子:集成镜子是单片的,作为整个 MEMS 设备/执行器单晶硅结构的一部分制造。镜子随后选择性金属化。通常厚度为 40-50 微米。只有较小的镜子是集成的,通常是直径为 0.8 毫米、1.2 毫米、2.0 毫米和 2.4 毫米的镜子。
粘合镜子:粘合镜子与 MEMS 设备/执行器分开制造,它也是具有优异光学特性的单晶硅结构,可以组装成具有倾斜功能的 MEMS 执行器。通过 Mirrorcle 的技术,有两种子类别:
无基座的粘合镜子:镜子与 MEMS 设备/执行器分开制造。这些镜子薄、惯性低且具有良好的平整度。它们被粘合到 MEMS 执行器上,位于旋转平台顶部。通常只有直径不超过 1.2 毫米的镜子可以通过这种方式组装。
带基座的粘合镜子:镜子分开制造。它是一个薄板,惯性低,但位于执行器上方 0.3 毫米的基座上。直径为 2.0 毫米及更大的镜子属于这种类型。这种方法允许制造直径达 6.4 毫米的镜子,几乎完全覆盖下方的执行器芯片。
Mirrorcle Technologies 是否提供单轴 MEMS 镜子?
单轴 MEMS 镜子自然更容易设计和制造,我们可以根据要求提供几乎任何需求的设备。我们已经为定制应用(如高清视频显示)实现了单轴设备,并始终欢迎相关咨询。库存产品包括用于直径为 0.8、1.0 或 1.2 毫米粘合镜子的单轴谐振执行器,以及用于直径为 1.6 毫米及更大或矩形和椭圆形镜子结构的单轴点对点执行器。
Mirrorcle Technologies 是否仅提供谐振 MEMS 镜子?
是的,我们提供多种设计,用于激光投影(如微型投影仪或视网膜显示)应用以显示视频和图像,也用于快速扫描激光雷达等成像应用。通常最好直接与我们讨论这些非标准需求,因为有多种选择可供选择——但这里给出了一些示例:单轴设备 A9R8 具有 0.8 毫米镜子,谐振频率约为 24kHz,机械扫描角度至少为 +/-8°(光学 +/-16°)。另一个镜子 A9R12 直径为 1.2 毫米,谐振频率约为 13kHz。直径为 1 毫米的镜子设计 A1R10 的谐振频率约为 16kHz。
有哪些可能的 MEMS 封装组合?哪种执行器尺寸适合哪种封装?
我们提供的最大执行器芯片尺寸为 8.0 毫米 x 8.0 毫米,可以轻松安装到 DIP24 封装或我们的 TINY48 连接器封装解决方案中。对于较小的芯片,我们提供 TINY20 封装,这是一种更紧凑的解决方案,可容纳尺寸达 5.2 毫米 x 5.2 毫米的芯片。
你们的镜子提供哪些类型的涂层?
我们目前在所有产品上提供铝(Al)作为标准镜子涂层,并为某些客户和应用提供金(Au)涂层,其中优势超过了额外成本。
可以在你们的执行器上安装客户提供的定制镜子吗?
将另一种基板粘合到执行器上并获得良好性能是不可能的。我们的镜子使用半导体制造工艺非常精细地加工,这可能是该技术能够实现的唯一原因。典型的镜子只有 40 微米厚。然而,硅结构和桁架支撑可以在沉积薄膜金属(尤其是双面沉积)时提供非常好的平整度。我们的镜子非常薄,通常比任何现成的大惯性反射镜质量少 50 倍。
MEMS 镜子的能力
Mirrorcle Technologies 的镜子可以用于点对点(或准静态)控制吗?
是的。事实上,Mirrorcle 的设备专为点对点光束扫描设计和优化。稳态模拟驱动电压会导致镜子倾斜角度的稳态模拟角度高度可重复。这也经常被称为准静态光束控制。用户基本上可以编程任意轴的位置和速度(扫描速率),从直流(稳态位置)到取决于特定产品的最大速度值。我们专有的无万向节设计的一个主要优势是能够在双轴上以同样高的速度扫描光束。我们提供世界上快、功耗低的双轴点对点控制镜子(并且能够在任何设定位置停止)。
典型的双轴设备类型的枢轴点在哪里?
我们的集成镜子是整个 MEMS 设备/执行器的一部分,厚度约为 40 微米。枢轴点位于该厚度的中间,大约在反射表面下方 20 微米处。我们向现有客户提供详细的机械模型,以帮助他们的光学设计。
粘合镜子包括基座或支架,将设备的反射表面抬高几百微米。因此,粘合镜子的枢轴点位于其反射表面下方几百微米处。
你们的双轴 MEMS 镜子设备的典型可实现角度是多少?
我们的大多数设备在双轴上均指定并交付超过 +/-5° 的机械倾斜(光学扫描 -10° 至 +10°——因此总光学视场约为 20°)。一些设计指定为 +/-6°,最后还有设计为 +/-8°(32° 视场)。通常,角度由于与速度的权衡而受到限制,尽管在某些情况下,粘合镜子的限制是机械的,以避免镜子板与下方执行器接触。几乎总是可以以速度为代价换取额外的角度,反之亦然。
你们的镜子可以达到的扫描速度是多少?
在点对点和矢量扫描类别中,我们最快的(0.8 毫米直径)设备的可用带宽约为 7kHz,谐振频率为 6kHz。每个更大的镜子尺寸意味着速度降低。速度与镜子尺寸之间存在反比关系。在相同的执行器尺寸和角度能力下,双倍镜子尺寸的速度大约为四分之一。总体而言,我们的设备是迄今为止很快的,并提供世界上较好的角度。必须记住,这些设备不是谐振设备——它们设计为能够在任何预定角度停止,并快速切换到任何其他角度。
执行器尺寸如何影响 MEMS 镜子的性能?
较大的镜子(>= 2.0 毫米)与较大的芯片(如 5.2 毫米 x 5.2 毫米至 8.0 毫米 x 8.0 毫米)配合使用时表现最佳。较大的执行器提供更多的扭矩,并且通常在与给定镜子尺寸结合时提供更多的速度。在执行器尺寸类别中,我们提供不同的设计,一些提供更多的角度(和更少的速度),一些提供更少的角度(但更多的速度)与给定镜子尺寸结合。
我注意到开发套件中包含红色激光。镜子也可以处理其他可见光和红外(IR)波长的激光吗?
开发套件包括一个 5 mW(IIIa 类)红色(635 nm)激光器,光束直径约为 1.5 毫米,适用于我们的大多数镜子尺寸。它们具有 1 位数字调制能力,用于快速开关控制。非常适合实验我们设备和软件的各种矢量图形功能,并开发与 Mirrorcle 的 USB 控制器同步的数字输出和/或触发器。标准镜子为铝(Al)涂层,适用于红色、绿色、蓝色或红外激光——镜子涂层具有非常宽的反射带宽。金涂层镜子也提供,以提高某些波长(如 700-1000nm 范围)的反射率。我们提供三种不同的窗口类型,覆盖 MEMS 设备,具有抗反射(AR)宽带涂层,适用于可见光、近红外和红外波长范围。
你们的镜子的标准反射率是多少?
这取决于涂层选择(Al 或 Au)、入射角、偏振和您偏好的波长。铝涂层镜子在几乎所有波长下表现良好,因此是我们最标准的产品——详细信息可以参考任何超光滑铝的标准反射曲线。我们的金涂层在红色到红外波长范围内提供出色的整体效果,也可以与任何标准的超光滑薄膜金涂层进行比较。
你们的 MEMS 镜子的激光损伤阈值是多少?
所有 MEMS 镜子都可以处理高达 1W 的连续光功率(CW),几乎适用于任何波长、偏振等。超过 1W 时,损伤阈值当然取决于镜子尺寸、涂层和波长。例如,3W CW 蓝色或绿色激光在 2 毫米或更大的镜子上。较大的镜子具有更高的阈值,因为它们比小镜子更有效地冷却。Mirrorcle 的一篇关于 MEMS 镜子用于汽车前照灯的论文指出,2 毫米镜子的损伤阈值在 445nm 波长下约为 4W。对于非常高峰值功率脉冲(低 CW 或平均功率)的注量损伤阈值,必须针对每个具体情况进行测试——但可以参考一般的铝或金涂层损伤阈值。
你们的镜子是否经过测试以用于具有挑战性的环境?它们能否承受振动、极端温度、湿度等?
我们已由独立的环境应力测试机构对多批设备进行了测试。在所有情况下,设备直接接触金属夹具,该夹具将它们固定到位并连接到各种测试设备。所有集成类别的设备均通过了 500G 冲击测试。通常,振动不会对我们的较小镜子设计构成挑战——随着镜子尺寸的增加(和共振频率的降低),冲击或振动可能导致不可预测的设备行为。至于温度耐受性,MEMS 镜子轻松通过任何热冲击要求,并指定在 -40°C 至 105°C 范围内。在开发项目中,我们已证明设备在 -270°C 至 +200°C 以及远低于室温的情况下可靠运行。所有这些稳健性方面都归功于单晶硅结构和静电驱动。
开发套件和硬件
为什么“TINY20”和“TINY48”是开发套件的标准封装?
TINYxx 封装是一个小型印刷电路板(PCB)组件,带有四个安装孔、一个小型 10 针连接器(在其背面)和一个无引线陶瓷载体 LCC20 或 LCC48(在其正面)。我们也称这些为“连接器封装”,因为它们基本上是即插即用的客户解决方案。MEMS 镜子组装在 LCC 中,并覆盖有抗反射(AR)涂层玻璃窗以进行保护,并位于 LCC 和整个 TINY 封装的几何中心。背面连接器与一个小型 10 针带状电缆配合,该电缆随所有 Mirrorcle MEMS 控制器和 MEMS 驱动器提供。此解决方案非常适合任何级别的集成——从初始实验到生产。它允许无需工具的手动操作,允许可靠地安装在光学单元中,为 MEMS 设备提供良好的保护等。它可以轻松安装到指定的支架上,该支架可以轻松集成到标准光学面包板中,并提供灵活的微调解决方案以实现对准。因此,可以方便、安全地快速切换设备类型。
有哪些可用的开发套件选项?
请参阅我们的开发套件网页,并联系我们以获取任何其他问题或详细信息。
Mirrorcle Technologies 是否提供任何内部 API 和 DLL 控制器/驱动器平台?如果是,这种平台的优势是什么?
作为控制器/驱动器平台,我们完全在内部设计和制造 USB-SL MZ MEMS 控制器,用于应用开发。这使我们能够从头开始构建固件和软件,始终考虑到可能影响设备安全操作的事件,如停止或启动操作等。与该 MEMS 控制器一起运行的软件开发套件(SDK)具有与我们旧版本相同的演示可执行文件和相同的感觉,并包括额外的功能和选项。底层是一个完全专有的 API 和 DLL,专门为 MEMS 镜子控制设计。
这种解决方案的一个优势是 Mirrorcle Technologies 拥有所有电路,这对于希望将此驱动器平台集成到其产品中的客户来说很有趣。另一个优势是该产品包括可以与镜子运动同步的激光驱动控制。板上有一个非常好的激光驱动器电路,提供约 100kHz 速率的 1 位数字调制。控制器具有相关的数字输出端口,具有 8 位输出,可以使用 API 中的命令编程为 255 个级别。它可以驱动蓝色/绿色或红色激光,但在随开发套件交付时,默认情况下会驱动红色激光二极管模块。
如果我们想导入一组点供激光束跟随或一组镜子“坐标”——你们的软件是否允许这样做,哪些文件格式与 Mirrorcle Technologies 的软件兼容?
我们接受三种数据集用于矢量图形演示:
包含关键点列表的文本/ASCII 文件
一种选择是导入包含 X、Y、M(=调制)(XYM)坐标的文本文件。软件将在关键点之间进行插值,以填充时间和速度,以便设备在 1/(刷新率)的时间内完成描述的轨迹。刷新率由软件 GUI 中的滑块给出。
然后,软件将无限重复描述的轨迹,直到程序停止。数据应形成三个空格分隔的列,如下例所示。前两列是关键点的归一化位置,从 -1 到 +1。这些值将根据特定设备的最大电压设置 Vmax 进行缩放。
第三列是激光调制(M)或消隐数据,1 表示 ON 轨迹,0 表示 OFF 轨迹。
描述字母“V”的关键点示例如下:
-0.50000 1.00000 1.00000
0.00000 -1.00000 1.00000
0.50000 1.00000 1.00000
-0.50000 1.00000 0.00000
最后一段将轨迹返回到字母 V 的起点,但激光关闭。
包含样本列表的文本/ASCII 文件
另一种选择是导入包含 XYM 坐标的文本文件,并无限重复文件中规定的轨迹,直到程序停止。数据应形成三个空格分隔的列,如下例所示。前两列是从 -1 到 +1 的归一化轨迹。这些值将根据特定设备的最大电压设置 Vmax 进行缩放。
第三列是激光调制(M)或消隐数据,1 表示 ON 轨迹,0 表示 OFF 轨迹。
由于文件包含要输出的实际样本,因此不会应用插值来增加或减少样本数量。
0.51231 0.85026 1.00000
0.51163 0.85054 1.00000
0.51098 0.85083 1.00000
0.51035 0.85114 0.00000
0.50975 0.85144 0.00000
在输出电压之前,程序还会要求用户提供每秒样本数(SPS)速率。此速率将确定每行输出之间的时间量。例如,SPS=1000 将每行输出在 1/SPS = 1 毫秒的时间间隔内。用户应非常小心地将适当的轨迹与适当的 SPS 设置结合,以免超过镜子设备的速度能力并引起振铃。适当的样本文件将以与开始位置相同的位置结束,以便它描述一个闭合轨迹,并且可以重复而不会对设备产生突然的步骤或脉冲。
国际激光显示协会(ILDA)标准文件:
请参阅以下网站以获取更多信息:
http://www.laserfx.com/Backstage.LaserFX.com/Standards/ILDAframes.html
http://paulbourke.net/dataformats/ilda/
选项 1 和 2 可以分别接受 .kpt 和 .smp 文件格式,或两者的 .txt 文件,包含易于阅读的三列表格。
控制器和驱动器之间有什么区别?
控制器将软件输入命令转换为 4 个高压输出,以命令 X、Y 位置以及 8 个低压数字输出(触发引脚或 M 输出)。Mirrorcle 的 USB-SL MZ MEMS 控制器设计为即插即用,并配有一个广泛的、开放的应用编程接口(API),供用户与控制器交互并开发自己的应用程序。
Mirrorcle 的 USB-SL MZ MEMS 控制器设计基于 Microchip 的 PIC32MZ MCU
驱动器将低压输入命令(例如来自 2 个输入 X、Y 的模拟 -10V 至 +10V
Mirrorcle Technologies, Inc. (MTI) was founded in 2005 as a spin-off of the Adriatic Research Institute where the core technology development began in 2001.
“MEMS” stands for microelectromechanical systems, which describes a technology that allows for the manufacture of ‘machines’ that contain components between 1 to 100 micrometers in size (hence the prefix “micro”). MEMS devices are made possible by modified semiconductor fabrication technologies that are more commonly used for the manufacture of electronics.
Like any mirrors, MEMS-based mirrors are used in optical beam-steering applications, i.e. to deflect optical beams or images from one point to another in a controlled fashion. By moving the mirror in a tip-tilt fashion optical beams can be deflected to new, arbitrary positions in space. Applications include 3D scanning and object digitization, projection displays, laser marking and printing, image scanning, free-space communication, position-tracking and sensing, rapid prototyping, Light Detection And Ranging (LADAR / LIDAR), Dynamic Solid State Lighting and Dynamic Headlights, and various biomedical imaging applications such as optical coherence tomography (OCT)-based imaging, among many others.
Mirrorcle Technologies offers proprietary gimbal-less two-axis MEMS designs which allow faster beam steering for larger mirrors and large angles. This results in the overall figure of merit in performance (Speed * Angle * Diameter) that is generally an order of magnitude larger than any competing approaches. Moreover, Mirrorcle’s MEMS are manufactured in a proprietary process which allows the entire microelectromechanical structure to be manufactured in a single (monolithic) layer of single-crystal silicon. This results in the highest repeatability and reliability of mirror positioning over many years and/or billions of cycles – and over an extremely large temperature range. Namely, this kind of manufacturing does not include any troublesome materials in moving parts such as metals, polymers, polysilicon, piezo-materials, magnets. All the moving, flexing portions of the structure are made of purely elastic material (single-crystal silicon), and they work entirely with electrostatic actuation with no notable current. These gimbal-less two-axis scanning MEMS mirrors provide ultra low-power and fast optical beam scanning at angles of up to 32deg in both axes, while dissipating less than 1 mW of power. The linearized driving scheme and 4-quadrant addressable electrostatic comb drive design yields nearly linear voltage-angle characteristics.
Additional information available in the MEMS Mirror Technical Overview.
We currently offer circular mirrors ranging from 0.8 to 7.5mm in diameter as regular in-stock items. Additionally, we have offered long, rectangular or elliptical mirrors for single-axis optical line deflection. Please contact us if your application requires larger or differently shaped mirror sizes. Because our mirrors are modular in design, we are able to realize a broad variety of mirror types and sizes to perfectly fit your application needs.
We offer two distinct categories of devices based on mirror fabrication methodology:
Integrated mirror: An integrated mirror is monolithic, fabricated as an integral part of the overall MEMS device/actuator single-crystal silicon structure. The mirror is later selectively metalized. It is often ~40-50um thick. Only smaller mirrors are integrated, usually those that have e.g. 0.8mm, 1.2mm, 2.0mm and 2.4mm diameter.
Bonded mirror: A bonded mirror is fabricated separately from the MEMS device/actuator and it is also a single-crystal silicon structure with excellent optical properties which can be assembled into a MEMS actuator with tip/tilt capabilities. There are two sub-categories possible through Mirrorcle’s technology:
– Bonded mirror with no pedestal (no stand-off): The mirror is fabricated separately from the MEMS device/actuator. These mirrors are thin, have low inertia, and offer good flatness. They are bonded to the MEMS-actuator, on top of the rotating stage. Usually only smaller mirrors up to 1.2mm can be assembled this way.
– Bonded mirror with pedestal (standing off above MEMS/actuator): The mirror is fabricated separately. It is a thin plate with low inertia, but it is standing on top of a 0.3mm pedestal above the actuator. Mirror sizes of 2.0mm and larger are of this type. This methodology allows mirrors of e.g. 6.4mm diameter which practically completely cover the underlying actuator chip.
Single-axis MEMS mirrors naturally are considerably easier to design and fabricate and we can provide devices to almost any requirement upon request. We have realized single-axis devices for custom applications (such as HD video display), and always welcome related inquiries. In stock items include a single-axis resonant actuator for bonded mirrors of 0.8, 1.0, or 1.2mm diameter, and a single-axis point to point actuator for bonded mirrors of 1.6mm and larger diameter or e.g. rectangular and elliptical mirror structures.
Yes, we have multiple designs available that are used in laser projection (e.g. picoprojector or retinal display) applications to display video and images, and are also used in imaging applications such as fast-scanning Lidar. It is usually best to discuss such less standard requirements with us directly as there are several options to choose from – but a few examples are given here: A single-axis device A9R8 with a 0.8mm mirror has ~24kHz resonance and is specified for at least +/-8° of mechanical scanning (+/-16° optical). Another mirror, A9R12 has a 1.2mm diameter and resonates around 13kHz. A 1mm diameter mirror design A1R10 has ~16kHz resonance.
The largest actuator die we offer has a footprint of 8.0mm x 8.0mm, and fits easily into either a DIP24 package or into our TINY48 connectorized package solution. Package choice for our smaller die is the TINY20, a more compact solution which can house chip sizes up to 5.2mm x 5.2mm footprint.
We currently offer aluminum (Al) as the standard mirror coating on all products, and gold (Au) for certain customers and applications where the benefits outweigh the additional cost.
It is not possible to bond another substrate to the actuator and get good performance. Our mirrors are very finely machined using semiconductor fabrication processes and it is perhaps the only reason that this technology is even possible. A typical mirror is only 40um thick. Yet the silicon structure and the truss-supports can give a very good flatness when a thin-film of metal is deposited (especially when deposited on both sides). Our mirrors are really very thin and typically have 50X less mass than any off-the-shelf reflectors with large inertia.
Yes. In fact, Mirrorcle’s devices are designed and optimized for point-to-point optical beam scanning. A steady-state analog actuation voltage results in a highly repeatable steady-stage analog angle of tip-tilt of the mirrors. This is also frequently called quasistatic beam steering. Users can essentially program position and velocity (scan rate) of either axis arbitrarily from dc (steady position) to a maximum speed value which depends on the specific product. One major advantage of our proprietary gimbal-less design is the capability to scan optical beams at equally high speeds in both axes. We offer the world’s fastest and lowest power-consuming two-axis point-to-point steering mirrors (and yet capable of stopping at any set position.)
Our integrated mirrors are part of the overall MEMS device/actuator, which is about 40um thick. The pivot point is somewhere in the middle of that thickness, about 20um below the reflecting surface. Detailed mechanical models are provided to current customers to aid in their optical design.
Bonded mirrors include pedestals or stand-offs which raise the reflective surface of the device by a few hundred microns. The pivot point of bonded mirror would therefore lie a few hundred microns below its reflecting surface.
Most of our devices are specified and delivered exceeding +/-5° mechanical tilt on both axes (-10° to +10° optical scan – so a total optical field of regard of ~20°). Some designs are specified for +/-6°, and finally there are designs for +/-8° (32° FoR). Generally the angle is limited due to trade-off with speed, although in some cases with bonded mirrors the limitation is mechanical, to avoid contact of the mirror plate with the underlying actuator. It is practically always possible to trade off speed for additional angle, and vice versa.
In the category of point-to-point and vector scanning, our fastest (0.8mm diameter) device has a useable bandwidth of ~7kHz, with its resonant frequency at ~6kHz. Each larger mirror size means a speed reduction. There is an inverse-quadratic relationship between speed and mirror size. Double mirror size will have approximately ¼ the speed given the same actuator size and angle capability. Overall, our devices are by far the fastest and offer the best angles in the world in this category. One must keep in mind that these devices are not meant to be resonant devices – they are designed to have the ability to stop at any predetermined angle, and quickly switch to any other angle.
Larger mirrors (>= 2.0mm) perform best with bigger die (e.g. 5.2mm x 5.2mm up to 8.0mm x 8.0mm). Larger actuators offer more torque and generally more speed when combined with a give mirror size. Within a size category of actuators, we offer different designs, some offer more angle (and less speed), some offer less angle (but more speed) when combined with a given mirror size.
The development kit includes a 5 mW (Class IIIa) Red (635 nm) Laser with a small ~1.5mm diameter beam which works well with most of our mirror sizes. They come with 1-bit digital modulation capability for fast on/off control. Great for experimentation with various vector graphics capabilities of our devices and software, and for development of synchronized digital outputs and/or triggers that are available with the Mirrorcle’s USB Controller. Standard mirrors are aluminum (Al) coated and will work great with red, green, blue or IR lasers – the mirror coating has a very broadband reflectance. Gold-coated mirrors are also offered for improved reflectance in certain wavelengths such as e.g. 700-1000nm range. We offer three different window types that cover the MEMS devices with antireflective (AR) broadband coating for VIS, NIR and IR wavelength ranges.
It depends on the choice of coating (Al or Au), angle of incidence, polarization and your preferred wavelength. The Al coated mirrors perform well at virtually all wavelengths and are therefore our most standard offering – for details one can look up any standard reflectance curves for ultra-smooth aluminum as a reference. Our gold coating yields great overall results for red to IR wavelengths, and can also be compared to any standard ultra-smooth thin film gold coating.
All the MEMS mirrors can handle up to 1W of continuous optical power (CW) at practically any wavelength, polarization, etc. Above 1W the threshold for damage of course depends on the mirror size, coating, and wavelength. For example, 3W CW blue or green on a 2mm or larger mirror. Larger mirrors would have a higher threshold as they cool much more efficiently than smaller ones. A Mirrorcle paper regarding use of MEMS mirrors for automotive headlights presented the damage threshold of the 2mm mirror to be ~4W at 445nm wavelength. Regarding fluence damage thresholds for very high peak power pulses (with low CW or average power), it is necessary to test for each and every specific case – however for reference one can look at aluminum or gold coating damage thresholds in general.
We have had tests done by an independent environmental stress testing house on multiple batches of our devices. In all cases devices in direct contact to a metal jig that was holding them in place and was tied to various test equipment. All the devices in the integrated category passed 500G shock tests. Typically, the vibration do not challenge our smaller mirror designs – with increasing mirror size (and decreasing resonant frequency), shock or vibration could result in unpredictable device behavior. As for temperature tolerance, the MEMS mirrors easily pass any requirements of thermal shock, and are specified from -40°C to 105°C. In development projects, we have demonstrated reliable device operation from -270°C to +200°C and well below room temperature. Again all of these aspects of robustness are owed to the single-crystal silicon structure and electrostatic driving.
The TINYxx package is an assembly of a small printed circuit board (PCB) with four mounting holes, a small 10-pin connector (on its backside), and a leadless ceramic carrier LCC20 or LCC48 (on its frontside). We also call these “Connectorized Packages” because they are basically plug-and-play solutions for customers. The MEMS mirrors are assembled in the LCCs and are covered with antireflection (AR) coated glass windows for protection and are positioned in the geometric center of the LCC and overall TINY package. The backside connector mates with a small 10-pin ribbon cable which is provided with all Mirrorcle MEMS Controllers and MEMS Drivers. This solution is great for any level of integration – from initial experiments to production. It allows for easy and safe manual handling without tools, allows for reliable mounting in optical cells, provides good protection for the MEMS device, etc. It can easily be mounted onto a designated mount which is easily integrated into standard optical breadboarding and comes with a flexible fine-tuning solution to allow alignment. Quick switching of device types is thus possible in a convenient and safe manner.
Please see our Development Kits web page here and contact us for any additional questions or details.
As a Controller/Driver platform with the USB-SL MZ MEMS Controller for application development, we completely design and manufacture in-house. This allowed us to build the firmware and software up from scratch, always with possible events with mind that may affect safe device operation, such as stop or start operations etc. The software development kit (SDK) that runs with this MEMS Controller has some of the same demo executables and the same feel as our older versions, and includes additional functionality and options. Underneath is a fully proprietary API and DLL which is designed specifically for MEMS mirror control.
One advantage of this solution is that Mirrorcle Technologies owns all of the circuitry, which becomes interesting to customers who aim to integrate this driver platform into their own products. Another advantage is that this product includes laser driving control that can be synchronized with mirror movement. There is a very good laser driver circuit on board, giving 1-bit digital modulation at ~100kHz rates. The controller has a correlated digital output port has an 8-bit output that can be programmed in 255 levels using commands in the API. It can drive blue/green, or red lasers, but when delivered with a development kit, it will drive a red laser diode module by default.
We accept 3 kinds of data sets for vector graphics demonstrations:
1) Text/ASCII file with a list of keypoints
One option is to import a text file with X, Y, M (=modulation) (XYM) coordinates of keypoints. The software will then interpolate between the keypoints to fill in the time and velocities for the device such that the overall described trajectory is completed in the time of 1/(refresh rate). The refresh rate is given by a slider in the software GUI.
The software will then repeat the described trajectory infinitely until the program is stopped. The data should be formed into three space-delineated columns as shown in the example below. The first two columns are normalized locations of keypoints from -1 to +1. These values will be scaled based on maximum voltage setting for a specific device, Vmax.
The third column is the laser modulation (M) or blanking data, 1 for ON trace and 0 for OFF trace.
An example of keypoints describing a letter “V” is:
-0.50000 1.00000 1.00000
0.00000 -1.00000 1.00000
0.50000 1.00000 1.00000
-0.50000 1.00000 0.00000
The last segment returns the trajectory to the starting point of the letter V, but with the laser off.
2) Text/ASCII file with a list of samples.
Another option is to import a text file with XYM coordinates and repeat the prescribed trajectory in the file infinitely until program is stopped. The data should be formed into three space-delineated columns as shown in the example below. The first two columns are normalized trajectories from -1 to +1. These values will be scaled based on maximum voltage setting for a specific device, Vmax.
The third column is the laser modulation (M) or blanking data, 1 for ON trace and 0 for OFF trace.
Because the file contains actual samples to be output, there will be no interpolation applied to add or reduce the number of samples.
0.51231 0.85026 1.00000
0.51163 0.85054 1.00000
0.51098 0.85083 1.00000
0.51035 0.85114 0.00000
0.50975 0.85144 0.00000
Before putting out the voltages, the program will also ask the user for the samples-per-second (SPS) rate. This rate will establish the amount of time between each row being output. So, for example, SPS=1000 will have each row output at 1/SPS = 1 ms separation in time. User should be very careful to combine proper trajectories with proper SPS setting so as not to exceed mirror devices’ speed capabilities and cause ringing. A proper file of samples will end in the same location that it started such that it describes a closed trajectory and can be repeated without sudden steps or impulses to the device.
3) International Laser Display Association (ILDA) standard files:
Please refer to these sites for more information:
http://www.laserfx.com/Backstage.LaserFX.com/Standards/ILDAframes.html
http://paulbourke.net/dataformats/ilda/
Options 1 and 2 can accept .kpt and .smp file formats respectively, or .txt files for both, containing easily readable tables with points in 3 columns.
A Controller converts software input commands to 4 high voltage outputs to command X,Y positions as well as to 8 low voltage digital outputs (trigger pins or M output). Mirrorcle’s USB-SL MZ MEMS Controller is designed for plug-and-play simplicity and is paired with an expansive, open application programming interface (API) for users to interact with the Controller and develop their own applications.
* Mirrorcle’s USB-SL MZ MEMS Controller design is based on Microchip’s PIC32MZ MCU
A Driver converts low voltage input commands (e.g. analog -10V to +10V from 2 inputs X,Y or digital SPI) to 4 high voltage outputs to command X,Y positions via 4 separate rotators and has no correlated digital output. Use of a Driver in-place of a Controller requires bench-top lab equipment such as function generators or a data acquisition (DAQ) card.
扫一扫
关注我们