一流产品,以专业铸造辉煌
我国自主研制的首台太赫兹自由电子激光装置(CTFEL)于2017年底在成都饱和出光并投入运行,标志着我国的太赫兹科技已正式步入自由电子激光时代。近期,中科院合肥研究院固体所计算物理与量子材料研究部徐文课题组与中国工程物理研究院合作,应用CTFEL装置,开展了电子材料的太赫兹动力学特性研究,相关成果以“Picosecond terahertz pump-probe realized from Chinese terahertz free-electron laser”为题,作为封面及亮点文章发表在Chinese Physics B(2020,DOI: 10.1088/1674-1056/ab961b)上。
电子能量弛豫时间是电子材料的关键物理参数之一。利用CTFEL特有的太赫兹脉冲结构(特别是皮秒脉宽微脉冲结构),研究人员搭建了首创的“单色皮秒太赫兹泵浦-探测”系统(图1),并基于此系统测量了半导体材料的泵浦-探测特性以及电子能量弛豫时间,研究了室温下高迁移率n-GaSb晶体在不同自由电子激光辐照频率下的动力学电子特性。结合理论模型的拟合(图2)发现,在1.6 THz(辐照功率为10 W)和2.4 THz(辐照功率为25 W)激光辐照下获得n-GaSb晶体的电子能量弛豫时间分别为2.92 ps和2.32 ps,这些结果与应用四波混频技术得到的实验结果一致。研究表明,在强太赫兹自由电子激光辐射下,电子-声子散射诱导的热电子效应或非线性电子响应会导致半导体材料中电子能量弛豫时间的减小,此时电子从辐射激光场获得能量,通过发射声子(或晶格振动)耗散能量。当声子发射的能量损失率小于光子吸收的能量增益率时,材料中的电子会被加热,从而使电子弛豫时间减小。
与其它超快光电探测技术比较,“单色皮秒太赫兹泵浦-探测”在电子和光电子材料研究中具有如下优势:(1)不涉及光生载流子和相关激子效应,可以测量自由电子的动量和能量弛豫动力学过程;(2)实现单色太赫兹泵浦和探测,无需对测量数据进行傅里叶变换来分析实验结果;(3)结合自由电子激光的频率连续可调性,实现对太赫兹泵浦-探测的辐照频率选择。该研究取得的结果表明,基于自由电子激光的“单色皮秒太赫兹泵浦-探测”技术,可为电子和光电子材料的动力学特性研究提供新的测量方法,拓宽了脉冲型太赫兹自由电子激光的应用研究领域。
由于该工作是在CTFEL装置上取得的首项可公开发表的应用研究成果,论文所有作者一致同意将该工作在国内期刊发表。本研究工作得到了国家基金委NSAF联合基金项目的支持。
图1. 基于CTFEL装置的“单色皮秒太赫兹泵浦-探测”系统光路图。
图2. 在1.2、1.6 和2.4 THz自由电子激光辐照下n-GaSb晶体的光透射泵浦-探测特性。粗糙线为原始实验数据,平滑线为理论拟合结果。
论文链接:http://cpb.iphy.ac.cn/EN/10.1088/1674-1056/ab961b
|
Abstract Electron energy relaxation time τ is one of the key physical parameters for electronic materials. In this study, we develop a new technique to measure τ in a semiconductor via monochrome picosecond (ps) terahertz (THz) pump and probe experiment. The special THz pulse structure of Chinese THz free-electron laser (CTFEL) is utilized to realize such a technique, which can be applied to the investigation into THz dynamics of electronic and optoelectronic materials and devices. We measure the THz dynamical electronic properties of high-mobility n-GaSb wafer at 1.2 THz, 1.6 THz, and 2.4 THz at room temperature and in free space. The obtained electron energy relaxation time for n-GaSb is in line with that measured via, e.g., four-wave mixing techniques. The major advantages of monochrome ps THz pump-probe in the study of electronic and optoelectronic materials are discussed in comparison with other ultrafast optoelectronic techniques. This work is relevant to the application of pulsed THz free-electron lasers and also to the development of advanced ultrafast measurement technique for the investigation of dynamical properties of electronic and optoelectronic materials. | ||||||||||
Keywords: free-electron laser ultrafast measurements picosecond phenomena | ||||||||||
Received: 10 March 2020 Revised: 12 April 2020 Accepted manuscript online: | ||||||||||
| ||||||||||
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1930116, U1832153, and 11574319) and the Fund from the Center of Science and Technology of Hefei Academy of Sciences, China (Grant No. 2016FXZY002). | ||||||||||
Corresponding Authors: Wen Xu E-mail: wenxu_issp@aliyun.com |
Cite this article:Chao Wang(王超), Wen Xu(徐文), Hong-Ying Mei(梅红樱), Hua Qin(秦华), Xin-Nian Zhao(赵昕念), Hua Wen(温华), Chao Zhang(张超), Lan Ding(丁岚), Yong Xu(徐勇), Peng Li(李鹏), Dai Wu(吴岱), Ming Li(黎明) Picosecond terahertz pump-probe realized from Chinese terahertz free-electron laser 2020 Chin. Phys. B 29 084101 |
扫一扫
关注我们